The heat equation

1. Suppose the coefficient is $\alpha=1.25$ for a system that is initially at ambient temperature $\left(20^{\circ} \mathrm{C}\right)$ and one end of a connector is maintained at $20^{\circ} \mathrm{C}$ through air cooling, while the other is in contact with a processor that heats up to $80^{\circ} \mathrm{C}$. Suppose the connector is 5 mm wide and you'd like to simulate heat flow through the connector, so you divide the connector into 1 mm wide sub-intervals.
a. The $\alpha=1.25$ has units proportional to per meter, so what should the unit be if we are working on the millimeter scale?

Answer: 1250.0
b. What is an appropriate value of Δt ?
Answer: $\Delta t=0.0002$
c. What is the approximation of the values at $t=0.0002$ and $t=0.0004$?
Answer: Note that $h=1$, so plugging in the values yield the numbers given, for example,

$$
20+0.0002 \times 1250 \times(20-2 \times 20+80) / 1^{2}=35
$$

80	80	80
20	35	42.5
20	20	23.75
20	20	20
20	20	20
20	20	20

d. Once you have completed the topic on Laplace's equation, what the temperature distribution tend towards as t approaches infinity?
Answer: $\quad 806856443220$
2. If we halve α, that is, introduce a more insulating material, what will happen to the propagation of heat?

Answer: It will be slower, at propagating through the material. For example,

$$
20+0.0002 \times 625 \times(20-2 \times 20+80) / 1^{2}=27.5
$$

80	80	80
20	27.5	33.125
20	20	20.9375
20	20	20
20	20	20
20	20	20

Acknowledgement: Martin Szlapa for noting two digits were transposed in the solution to Question 1c.

